ÁLGEBRA DE GRACELI. QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA.

 


  MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.



ψ     [   ]    .




                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  / = [          ] ω       ψ      [ ] / [    ]    .   .



   = [          ] ,     [ ψ     [  ] / [  ]    .]    .




 = [          ] ,     [ ψ      [][]    .



ψ [ ψ  []/    .



[ ] /  ]    . ] 



ψ     [ ]    .



ψ     [ ]    .


ψ      []    .






ψ  .[ /   .  .


* [ ] .








 [].  .


ψ []  .










[]    .


ψ      [l]  / ]    .






ψ     [] / / ]     .


ψ [  []   .








ψ [.] / ψ     .



  [.] / ψ   .



A energia de Fermi de um gás de Fermi (ou gás de elétrons livres) não relativista tridimensional se pode relacionar com o potencial químico através da equação:

onde εF é a energia de Fermi, k é a constante de Boltzmann e T é a temperatura. Portanto, o potencial químico é aproximadamente igual a a energia de Fermi à temperaturas muito inferiores a uma energia característica denominada Temperatura de Fermi, εF/k. Esta temperatura característica é da ordem de 105K para um metal a uma temperatura ambiente de (300 K), pelo que a energia de Fermi e o potencial químico são essencialmente equivalentes. Este é um detalhe significativo dado que o potencial químico, e não a energia de Fermi, é quem aparece nas estatísticas de Fermi-Dirac.

Contexto avançado

[editar | editar código-fonte]
Principais energias em estrutura de bandas para sólidos cristalinos.

Elétrons são férmions, ou seja, são partículas regidas pela estatística de Fermi. Nesta estatística, um dado estado quântico pode ser ocupado por no máximo um e não mais que um férmion, e portanto a máxima probabilidade de ocupação de um dado estado quântico é um. Os elétrons situados dentro da amostra estão confinados por um potencial atrativo exercido pelos íons positivos da rede. Conforme mostrado pela mecânica quântica, potenciais confinantes apresentam níveis de energias discretos. No caso dos átomos isto se reflete nos tão conhecidos níveis atômicos de energia e no caso dos sólidos cristalinos, a aproximação entre os átomos leva a um agrupamento dos estados em bandas de energia. Estas bandas são vistas nas relações de dispersão para os sólidos como sendo as regiões de energia permitidas para os elétrons, separadas umas das outras por janelas de energias proibidas (ou gaps).

Rigorosamente falando,[1] a energia do nível de Fermi é definida em sistemas à temperatura de zero absoluto. Nesse caso, a energia do nível de Fermi é a energia do nível mais energético ocupado, visto que nessa temperatura todos os níveis com energia menor que a energia do nível de Fermi estariam ocupados (probabilidade igual a 1) e todos os níveis com energia acima, desocupados (probabilidade de ocupação nula). Para sistemas em temperaturas não nulas, não temos mais uma transição abrupta da probabilidade de ocupação, e sim uma probabilidade dada pela distribuição de Fermi-Dirac. Considera-se então como a energia do nível de Fermi a energia obtida pela média aritmética ponderada das energias de cada estado energético afetado pela excitação térmica (estados com probabilidades de ocupação diferentes de 1 ou 0) pesadas cada qual pela respectiva probabilidade de ocupação do estado associado. O denominador desta média será obviamente o número de estados envolvidos no processo. Repare que em acordo com a estatística de Fermi, dentre os referidos estados os menos energéticos têm probabilidade de ocupação maior do que aqueles mais energéticos. Para aproximação de elétrons livres a densidade de estados cresce com a raiz quadrada da energia, resultando em uma parábola no gráfico de energia x densidade de estados. Em semicondutores e isolantes esta dependência pode ser bem mais complicada.

Outra definição equivalente implica dizer que a energia de Fermi corresponde ao potencial eletroquímico do sistema na temperatura de zero absoluto. Uma extensão a temperaturas maiores é evidente, e a energia de Fermi corresponde assim ao potencial eletroquímico do sistema na temperatura considerada. A energia de Fermi expressa, portanto, qual seria a variação da  total do sólido, considerado sempre como sistema isolado e em equilíbrio termodinâmico, caso um elétron fosse dele removido. Sendo ENtotal a energia total do sistema no estado neutro, em seu equilíbrio termodinâmico, e EN-1total a energia total do sistema também em seu novo equilíbrio termodinâmico mas após a remoção do elétron, temos que:

EF = ENtotal - EN-1total

Nas definições acima, o nível de referência é o nível de menor energia disponível aos N elétrons, e a remoção de um elétron provoca, então, a redução da energia do sistema. Neste referencial a energia de Fermi é, portanto, positiva, bem como o potencial eletroquímico.

Quando dois materiais diferentes são colocados em contato, a condição de equilíbrio termodinâmico exige que as suas energias de Fermi sejam iguais. Se as energias de Fermi fossem diferentes, a passagem de um elétron do sólido com maior energia de Fermi para o sólido com menor energia de Fermi resultaria em uma diminuição da energia total do sistema e o sistema composto não estaria, então, em sua configuração de equilíbrio, a de mínima energia, conforme exigido pelas leis da termodinâmica. Este fato dá origem a um fenômeno conhecido por diferença de potencial de contato que encontra diversas aplicações práticas, a saber na eletrônica de estado sólido (junção PN) e no uso do metal de sacrifício em navios.

Compartimento monodimensional quadrado

[editar | editar código-fonte]

A monodimensional compartimento quadrado infinito é um modelo para uma caixa mono dimensional. É um sitema  em mecânica quântica para o qual a solução para uma partícula isolada é bem conhecido. Os níveis são marcados por um único número quântico n e as energias são dadas por

.

Suponha-se agora que em vez de uma partícula nesta caixa  temos N partículas na caixa e que estas partículas são férmions com spin 1/2. Então somente duas partículas podem ter a mesma energia i.e. duas partículas podem ter a energia de , ou duas partículas podem ter energia  e assim por diante. A razão que duas partículas podem ter a mesma energia é que uma partícula de spin 1/2 pode ter um spin de 1/2 (spin "acima") ou um spin de -1/2 (spin "abaixo"), conduzindo a dois estadois para cada nível de energia. Quando nós olhamos na energia total deste sistema, a configuração para as quais a energia total é a menor (o estado fundamental), é a configuração onde todos os níveis de energia acima de n=N/2 estão ocupados e todos os níveis mais altos estão vazios. A energia de Fermi é consequentemente

.

Partícula livre clássica

[editar | editar código-fonte]

A partícula livre clássica é caracterizada simplesmente por uma velocidade fixa v. O momento linear é dado por

e a energia cinética, que é igual à energia total, é dada por

onde m é a massa da partícula e v é o vetor velocidade da partícula.

Partícula livre quântica

[editar | editar código-fonte]

Uma partícula livre na mecânica quântica (não relativística) é descrita pela equação de Schrödinger livre:

onde ψ é a função de onda da partícula na posição r e tempo t. A solução para uma partícula com momento p ou vetor de onda k, na freqüência angular ω ou energia E, é dada pela onda plana complexa:

com amplitude A. Como para todas as partículas quânticas livres ou ligadas, o princípio da incerteza de Heisenberg

(da mesma forma para as direções y e z) e as relações De Broglie:[1]:

se aplicam. Como a energia potencial é adotada como zero, a energia total E é igual à energia cinética, que tem a mesma forma da física clássica:

Há várias equações que descrevem partículas relativísticas: veja equações de onda relativísticas.






energia de ligação (EB) é um termo normalmente utilizado quando se trabalha com a análise da estrutura eletrônica da matéria (estrutura de bandas), em especial na espectroscopia de fotoelétrons. É comum também em outras, a exemplo na física do estado sólido.

Rigorosamente falando, a energia de ligação de um dado estado quântico eletrônico identificado por s é a diferença das energias totais do sistema quando este estado encontra-se desocupado e ocupado por um elétron, respectivamente. Assume-se que o sistema, mantida a ausência no primeiro caso, já tenha relaxado energeticamente de forma a acomodar-se à ausência do elétron no referido estado, assumindo a configuração que lhe permita então a menor energia total com o referido estado vazio. Sendo EsistemaN-1 a energia total do sistema com a ausência do elétron no referido estado [nota 1] e EtotalN a energia total do sistema com o referido estado preenchido, ou seja, com N elétrons e em seu estado de equilíbrio termodinâmico, temos que:

EB = E N−1 sistema − ENtotal

Em sólidos geralmente utiliza-se como referência para a medida da energia de ligação a energia de Fermi. Entretanto não é incomum encontrar-se dados sobre energias de ligação referidas à energia de nível de vácuo, ou, às vezes, à energia do topo da banda de valência, e certo cuidado deve ser tomado ao se utilizar valores obtidos da literatura.

Devido às dificuldades inerentes na determinação da energia total do sistema, costuma-se assumir aproximações práticas para a energia de ligação. A mais simples consiste em negligenciar a energia envolvida no processo de relaxação do sistema e assumir a energia de ligação como sendo o negativo da energia do estado a partir do qual o elétron é retirado. Esta aproximação, apesar de negligenciar mudanças nos orbitais atômicos do qual o elétron é removido bem como mudanças na distribuição eletrônica do cristal devido à presença de um íon positivo na rede e à ausência de um elétron, mostra-se muitas vezes útil, e é conhecida como aproximação de Koopman.[1]

Tabelas com as energias de ligações para os elementos e vários compostos destes podem ser encontradas na literatura.[2


Comentários

Mensagens populares deste blogue